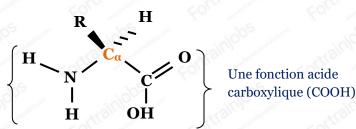


Biochimie – Structure des protides Les acides aminés

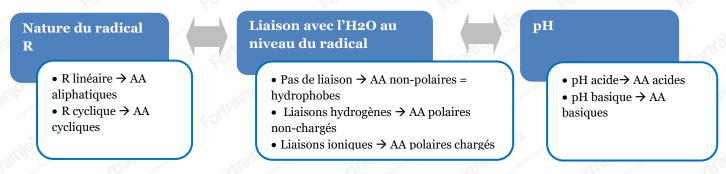
LES ACIDES AMINÉS

I. Formule générale


Les acides aminés (AA) sont les principaux constituants des protéines. Il existe 20 AA essentiels.

Un AA est formé par :

Chaine latérale variable = Radical


H

Une fonction amine (NH2)

II. Classification

Plusieurs types de classifications selon :

III. Propriétés Physiques des AA

1. Solubilité

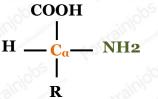
- Les AA sont faiblement solubles au pHi.
- La solubilité diminue en présence d'une forte concentration en ions et une chaîne latérale apolaire.

2. L'absorption dans l'UV

Les AA aromatiques absorbent à une λ = 280 nm.

3. Pouvoir rotatoire

C'est la propriété des AA de dévier le plan d'une lumière polarisée par rapport à un carbone asymétrique (notée C*) soit :



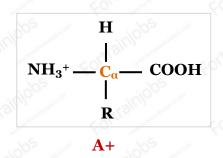
BTS Diététique - Fiche de cours

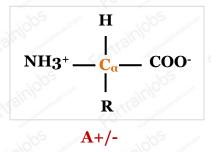
Biochimie – Structure des protides Les acides aminés

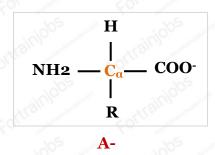
- A droite → AA dextrogyres (+)
- A gauche → AA lévogyres (-)

Enantiomères : lorsque deux composés sont des images l'un de l'autre dans un miroir sans être superposables.

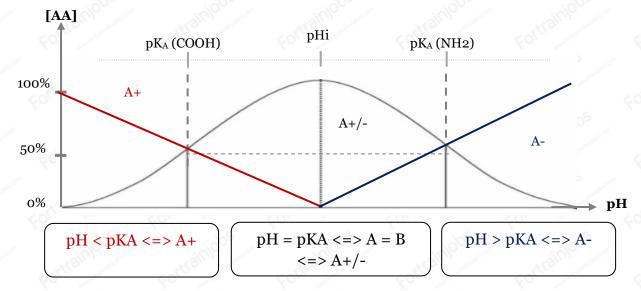
Η | | NH2 — Cα — COOH | R


NH2 à gauche, l'AA appartient à la série L.


NH2 à droite, l'AA appartient à la série D.


4. Propriétés d'ionisation

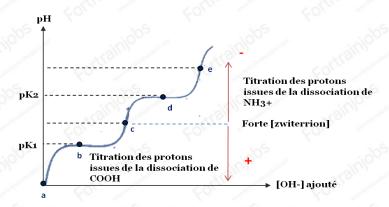
Ionisation de groupement COOH et NH2 des AA


Un AA s'ionise en solution en fonction du pH et peut exister sous l'une des trois formes suivantes :

→ Le pK_A est le pH de demi-dissociation.

> Notion de pHi

Le point isoélectrique (pHi) : pH pour lequel la charge globale de l'AA est nulle (A+] = [A-]. \$\forms \text{ Forme neutre [A+/-] dite zwiterrionique.}\$


Les acides aminés

Calcul du pHi

> Conséquence de l'ionisation des AA

Courbe de Titrage

∜Mise en évidence de pH en fonction de la quantité de base ou d'acide → pour déterminer les pKa de l'acide aminé.

Effet tampon

\$C'est l'inverse du coefficient directeur de la tangente à la courbe. Il est exprimé en nombre de moles de protons captés ou cédés.

Effet tampon est maximal \Leftrightarrow pH = pK.

5. Autres propriétés chimiques

> Dues à la fonction COOH

- Estérification : AA + Alcool => Ester + Eau.

https://www.formationsbacplus2.com/cours-bts-diététique

FORTRAINJOBS BACPLUS 2

BTS Diététique – Fiche de cours

Biochimie – Structure des protides Les acides aminés

Décarboxylation : AA => Amine + CO2.

$$\begin{array}{cccc}
 & H & H & \downarrow \\
 & I & I & \downarrow \\
 & NH2 - \frac{C_{\alpha}}{I} - COOH & \longrightarrow & NH2 - \frac{C_{\alpha}}{I} - H + CO2 \\
 & R & R
\end{array}$$

- Amidification : AA + Amine => Amide + Eau.

$$\begin{array}{c}
H & H & O \\
I & I & I \\
NH2 - \frac{C_0}{I} - COOH + NH2 - R' \longrightarrow NH2 - \frac{C_0}{I} - C - NH - R' + H2O \\
R & R
\end{array}$$

> Dues à la fonction NH2

- Désamination oxydative : Perte d'un groupement amine de l'AA.

COOH
$$-\frac{C_{\alpha}}{C_{\alpha}}$$
 NH₂ + ½ O₂ \longrightarrow COOH $-\frac{C_{\alpha}}{C_{\alpha}}$ = O + NH₃

R

- Transamination : AA + Acide alpha-cétonique => Acide alpha-cétonique + AA.

> Dues au Radical alcool

Estérification : AA = alcool + acide.

$$OH \longrightarrow R + I/2I \longrightarrow I \longrightarrow R$$

6. Méthodes de fractionnement / séparation des AA

Deux méthodes sont généralement plus utilisées :

- Électrophorèse : séparation des AA selon la charge en fonction d'un pH donné.
- Chromatographie: technique de séparation en deux phases:
 - Phase une phase fixe (= stationnaire);
 - o Phase mobile.