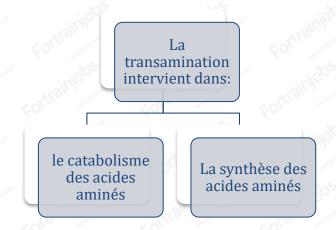
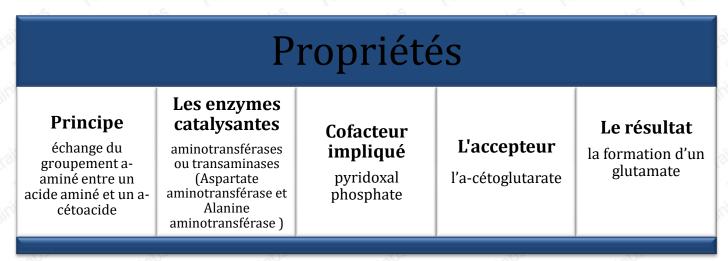

BTS diététique – Fiche de cours Biochimie - métabolisme azoté

Biochimie - métabolisme azoté Métabolisme des acides aminés

MÉTABOLISME DES ACIDES AMINÉS

Dégradation des acides aminés





BTS diététique – Fiche de cours Biochimie - métabolisme azoté

Métabolisme des acides aminés

ansamination

La réaction générale catalysée par les aminotransférases est illustrée comme suite :

$$P_{1}$$
-CH-COC
Acide aminé

 P_{2} -CH-COC
 P_{3} -CH-COC
 P_{4} -CH-COC
 P_{4} -NH-2

 P_{2} -CH-COC
 P_{4} -NH-2

 P_{5} -CO-COC
 P_{5} -CH-COC
 $P_{$


BTS diététique – Fiche de cours Biochimie - métabolisme azoté

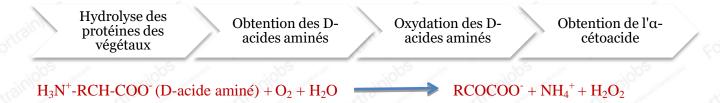
Biochimie - métabolisme azoté Métabolisme des acides aminés

Désamination oxydative

☐ Glutamate déshydrogénase

- Le glutamate déshydrogénase est une enzyme qui intervient dans la dégradation de l'ammoniac par le biais du NAD+ c'est la désamination oxydative.
- Le glutamate déshydrogénase intervient aussi dans synthèse de l'ammoniac par le biais du NADP+ c'est l'assimilation de l'ammoniac

Le sens de la réaction dépend des concentrations du glutamate, de l'α-cétoglutarate, de NH3et du rapport des formes réduites et oxydées des coenzymes (NADPH,H+/NADP+ et NADH,H+/NAD+).


Oxydases des acides aminés

Les flavoprotéines sont des déshydrogénase qui fonctionnent avec les coenzymes ainsi que le FAD et le FMN. On distingue la L-acide aminée oxydase et la D-acide aminée oxydase.

- L-acide aminé oxydase (L-aminoacide oxydase) : enzyme hépatique à FMN

$$H_3N^+$$
-RCH-COO- (L-acide aminé) + O_2 + H_2O RCOCOO- + NH_4^+ + H_2O_2

- **D-acide aminé oxydase** (D-aminoacide oxydase) : enzyme hépatique et rénale à FAD

